Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle: voltage-clamp analysis and biochemical characterization of the receptor.

نویسندگان

  • E Jaimovich
  • M Ildefonse
  • J Barhanin
  • O Rougier
  • M Lazdunski
چکیده

This paper describes the effects of a toxin from the scorpion Centruroides suffusus suffusus on frog skeletal muscle. The main findings are the following, (i) Centruroides toxin (CssII) blocks the early phase of the inward sodium current in the muscle that arises from influx via Na+ channels in the surface membrane, but it does not affect the late phase of the inward current that represents flux through Na+ channels in the T-tubule membranes, (ii) CssII, in marked contrast to tetrodotoxin, does not affect contraction of the muscle, (iii) Measurements of the binding of 125I-labeled CssII to a partially purified membrane preparation from the muscle indicate that the Kd of the CssII--receptor complex is approximately 0.4 nM. The half-life for the dissociation of this complex is 3 min at 22 degrees C and 16 min at 2 degrees C. Binding of the radiolabeled toxin varies markedly with pH and becomes insignificant at pH greater than 8.5. Proteolytic digestion of the membrane preparation decreases its ability to bind CssII, suggesting that the receptor is a protein. (iv) The number of binding sites for a radiolabeled derivative of tetrodotoxin on the membrane preparation was similar to that for CssII. However, neither tetrodotoxin nor any of seven other neurotoxins and some local anesthetics that alter the functioning of the Na+ channel have any effect on the binding of CssII to the muscle membrane. These results therefore indicate that CssII belongs to a different class of neurotoxins that has a different receptor on the Na+ channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes

A variety of scorpion venoms and purified toxins were tested for effects on ion channels in human T lymphocytes, a human T leukemia cell line (Jurkat), and murine thymocytes, using the whole-cell patch-clamp method. Nanomolar concentrations of charbdotoxin (CTX), a purified peptide component of Leiurus quinquestriatus venom known to block Ca2+-activated K+ channels from muscle, blocked "type n"...

متن کامل

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor.

This paper describes the interaction of apamin, a bee venom neurotoxin, with the mouse neuroblastoma cell membrane. Voltage-clamp analyses have shown that apamin at low concentrations specifically blocks the Ca2+-dependent K+ channel in differentiated neuroblastoma cells. Binding experiments with highly radiolabeled toxin indicate that the dissociation constant of the apamin-receptor complex in...

متن کامل

Interactions of the C-11 hydroxyl of tetrodotoxin with the sodium channel outer vestibule.

The highly selective sodium channel blocker, tetrodotoxin (TTX) has been instrumental in characterization of voltage-gated sodium channels. TTX occludes the ion-permeation pathway at the outer vestibule of the channel. In addition to a critical guanidinium group, TTX possesses six hydroxyl groups, which appear to be important for toxin block. The nature of their interactions with the outer vest...

متن کامل

CSTX-1, a toxin from the venom of the hunting spider Cupiennius salei, is a selective blocker of L-type calcium channels in mammalian neurons.

The inhibitor cystine-knot motif identified in the structure of CSTX-1 from Cupiennius salei venom suggests that this toxin may act as a blocker of ion channels. Whole-cell patch-clamp experiments performed on cockroach neurons revealed that CSTX-1 produced a slow voltage-independent block of both mid/low- (M-LVA) and high-voltage-activated (HVA) insect Ca(v) channels. Since C. salei venom affe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 79 12  شماره 

صفحات  -

تاریخ انتشار 1982